A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE.

نویسندگان

  • Geoffrey J Faulkner
  • Alistair R R Forrest
  • Alistair M Chalk
  • Kate Schroder
  • Yoshihide Hayashizaki
  • Piero Carninci
  • David A Hume
  • Sean M Grimmond
چکیده

Cap analysis gene expression (CAGE) is a high-throughput, tag-based method designed to survey the 5' end of capped full-length cDNAs. CAGE has previously been used to define global transcription start site usage and monitor gene activity in mammals. A drawback of the CAGE approach thus far has been the removal of as many as 40% of CAGE sequence tags due to their mapping to multiple genomic locations. Here, we address the origins of multimap tags and present a novel strategy to assign CAGE tags to their most likely source promoter region. When this approach was applied to the FANTOM3 CAGE libraries, the percentage of protein-coding mouse transcriptional frameworks detected by CAGE improved from 42.9 to 57.8% (an increase of 5516 frameworks) with no reduction in CAGE to microarray correlation. These results suggest that the multimap tags produced by high-throughput, short sequence tag-based approaches can be rescued to augment greatly the transcriptome coverage provided by single-map tags alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BTN25-RV-Hayashizaki R4.indd

Cap analysis gene expression (CAGE) was introduced in 2003 as a method to determine transcription start sites on a genome-wide scale by isolating and sequencing short sequence tags originating from the 5′ end of RNA transcripts (1). Mapping these tags back to the reference genome identifies the transcription start sites from which the transcripts originated. CAGE relies on a cap-trapper system ...

متن کامل

MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data

MPromDb (Mammalian Promoter Database) is a curated database that strives to annotate gene promoters identified from ChIP-seq results with the goal of providing an integrated resource for mammalian transcriptional regulation and epigenetics. We analyzed 507 million uniquely aligned RNAP-II ChIP-seq reads from 26 different data sets that include six human cell-types and 10 distinct mouse cell/tis...

متن کامل

P-215: Discovery of A Novel APA Variant of A Human Potential Gene Based on Expressed Sequenced Tags Analysis

Background: Expressed sequence tags (ESTs) are sequences of cDNA fragments prepared from different tissue sources. There are over one million of these sequences in the publicly available database, and these sequences are believed to represent more than half of all human genes. The ESTs belong to different cDNA libraries, was prepared from one particular cell type, organ, or tumor. Therefore, th...

متن کامل

Transcriptome annotation using tandem SAGE tags

Analysis of several million expressed gene signatures (tags) revealed an increasing number of different sequences, largely exceeding that of annotated genes in mammalian genomes. Serial analysis of gene expression (SAGE) can reveal new Poly(A) RNAs transcribed from previously unrecognized chromosomal regions. However, conventional SAGE tags are too short to identify unambiguously unique sites i...

متن کامل

Resolving Conflicting Predictions from Multimapping Reads

The first step in the analysis of data produced by ultra-high-throughput next-generation sequencing technology is to map short sequence "reads" to a reference genome, if available. Sequencing errors, repeat regions, and polymorphisms may lead a read to align to multiple locations in the genome reasonably well. While ignoring such multimapping reads, or some of their alignments, will reduce the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genomics

دوره 91 3  شماره 

صفحات  -

تاریخ انتشار 2008